Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Infect Public Health ; 17(6): 1047-1049, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38678725

RESUMEN

Legionellers' desease accounts for 1-8 % of cases of severe community-acquired pneumonia (CAP). Legionella spp. Is the causative organism that can result in respiratory failure, multi-organ dysfunction, sepsis, and death. Therefore, rapid diagnosis and efficient treatment are crucial. We report the clinical and microbiology study of a patient with community-acquired pneumonia caused by Legionella pneumophila, with fatal outcome. After death, the strain causing the infection was identified as Legionella pneumophila serogroup 1, Olda OLDA phenotype and sequence-type 1. This is the first reported case of septic shock and death associated with an isolate of these characteristics.

2.
Lancet Microbe ; 3(10): e744-e752, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35932764

RESUMEN

BACKGROUND: Epidemiological studies are necessary to explore the effect of current pneumococcal conjugate vaccines (PCVs) against antibiotic resistance, including the rise of non-vaccine serotypes that are resistant to antibiotics. Hence, epidemiological changes in the antimicrobial pattern of Streptococcus pneumoniae before and during the first year of the COVID-19 pandemic were studied. METHODS: In this national surveillance study, we characterised the antimicrobial susceptibility to a panel of antibiotics in 3017 pneumococcal clinical isolates with reduced susceptibility to penicillin during 2004-20 in Spain. This study covered the early and late PCV7 periods; the early, middle, and late PCV13 periods; and the first year of the COVID-19 pandemic, to evaluate the contribution of PCVs and the pandemic to the emergence of non-vaccine serotypes associated with antibiotic resistance. FINDINGS: Serotypes included in PCV7 and PCV13 showed a decline after the introduction of PCVs in Spain. However, an increase in non-PCV13 serotypes (mainly 11A, 24F, and 23B) that were not susceptible to penicillin promptly appeared. A rise in the proportion of pneumococcal strains with reduced susceptibility to ß-lactams and erythromycin was observed in 2020, coinciding with the emergence of SARS-CoV-2. Cefditoren was the ß-lactam with the lowest minimum inhibitory concentration (MIC)50 or MIC90 values, and had the highest proportion of susceptible strains throughout 2004-20. INTERPRETATION: The increase in non-PCV13 serotypes associated with antibiotic resistance is concerning, especially the increase of penicillin resistance linked to serotypes 11A and 24F. The future use of PCVs with an increasingly broad spectrum (such as PCV20, which includes serotype 11A) could reduce the impact of antibiotic resistance for non-PCV13 serotypes. The use of antibiotics to prevent co-infections in patients with COVID-19 might have affected the increased proportion of pneumococcal-resistant strains. Cefotaxime as a parenteral option, and cefditoren as an oral choice, were the antibiotics with the highest activity against non-PCV20 serotypes. FUNDING: The Spanish Ministry of Science and Innovation and Meiji-Pharma Spain. TRANSLATION: For the Spanish translation of the abstract see Supplementary Materials section.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Infecciones Neumocócicas , Antibacterianos/farmacología , Cefotaxima/farmacología , Cefalosporinas , Farmacorresistencia Bacteriana , Eritromicina/farmacología , Humanos , Pandemias/prevención & control , Penicilinas/farmacología , Infecciones Neumocócicas/tratamiento farmacológico , Vacunas Neumococicas/uso terapéutico , SARS-CoV-2 , Serogrupo , España/epidemiología , Streptococcus pneumoniae , Vacunas Conjugadas , beta-Lactamas/farmacología
3.
Microbiol Spectr ; 10(3): e0045322, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35695525

RESUMEN

The new generation of organoids derived from human pluripotent stem cells holds a promising strategy for modeling host-bacteria interaction studies. Organoids recapitulate the composition, diversity of cell types, and, to some extent, the functional features of the native organ. We generated lung bud organoids derived from human embryonic stem cells to study the interaction of Streptococcus pneumoniae (pneumococcus) with the alveolar epithelium. Invasive pneumococcal disease is an important health problem that may occur as a result of the spread of pneumococcus from the lower respiratory tract to sterile sites. We show here an efficient experimental approach to model the main events of the pneumococcal infection that occur in the human lung, exploring bacterial adherence to the epithelium and internalization and triggering an innate response that includes the interaction with surfactant and the expression of representative cytokines and chemokines. Thus, this model, based on human minilungs, can be used to study pneumococcal virulence factors and the pathogenesis of different serotypes, and it will allow therapeutic interventions in a reliable human context. IMPORTANCE Streptococcus pneumoniae is responsible for high morbidity and mortalities rates worldwide, affecting mainly children and adults older than 65 years. Pneumococcus is also the most common etiologic agent of bacterial pneumonia and nonepidemic meningitis, and it is a frequent cause of bacterial sepsis. Although the introduction of pneumococcal vaccines has decreased the burden of pneumococcal disease, the rise of antibiotic-resistant strains and nonvaccine types by serotype replacement is worrisome. To study the biology of pneumococcus and to establish a reliable human model for pneumococcal pathogenesis, we generated human minilungs from embryonic stem cells. The results show that these organoids can be used to model some events occurring during the interaction of pneumococcus with the lung, such as adherence, internalization, and the initial alveolar innate response. This model also represents a great alternative for studying virulence factors involved in pneumonia, drug screening, and other therapeutic interventions.


Asunto(s)
Células Madre Embrionarias Humanas , Infecciones Neumocócicas , Adulto , Niño , Células Madre Embrionarias Humanas/metabolismo , Humanos , Pulmón , Infecciones Neumocócicas/microbiología , Vacunas Neumococicas , Streptococcus pneumoniae , Factores de Virulencia/metabolismo
4.
Sci Rep ; 12(1): 6668, 2022 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-35461321

RESUMEN

Biofilm-associated infections are of great concern because they are associated with antibiotic resistance and immune evasion. Co-colonization by Staphylococcus aureus and Streptococcus pneumoniae is possible and a threat in clinical practice. We investigated the interaction between S. aureus and S. pneumoniae in mixed biofilms and tested new antibiofilm therapies with antioxidants N-acetyl-L-cysteine (NAC) and cysteamine (Cys). We developed two in vitro S. aureus-S. pneumoniae mixed biofilms in 96-well polystyrene microtiter plates and we treated in vitro biofilms with Cys and NAC analyzing their effect by CV staining and viable plate counting. S. pneumoniae needed a higher proportion of cells in the inoculum and planktonic culture to reach a similar population rate in the mixed biofilm. We demonstrated the effect of Cys in preventing S. aureus biofilms and S. aureus-S. pneumoniae mixed biofilms. Moreover, administration of 5 mg/ml of NAC nearly eradicated the S. pneumoniae population and killed nearly 94% of MSSA cells and 99% of MRSA cells in the mixed biofilms. The methicillin resistance background did not change the antioxidants effect in S. aureus. These results identify NAC and Cys as promising repurposed drug candidates for the prevention and treatment of mixed biofilms by S. pneumoniae and S. aureus.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Acetilcisteína/farmacología , Antibacterianos/farmacología , Antioxidantes/farmacología , Biopelículas , Cisteamina/farmacología , Meticilina/farmacología , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Streptococcus pneumoniae
5.
J Antimicrob Chemother ; 77(4): 1045-1051, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35045160

RESUMEN

BACKGROUND: Surveillance studies including antibiotic resistance and evolution of pneumococcal serotypes are critical to evaluate the susceptibility of commonly used antibiotics and the contribution of conjugate vaccines against resistant strains. OBJECTIVES: To determine the susceptibility of clinical isolates of Streptococcus pneumoniae with reduced susceptibility to penicillin to a panel of antibiotics during the period 2004-20 and characterize the impact of pneumococcal conjugate vaccines in the evolution of resistant serotypes. METHODS: We selected 3017 clinical isolates in order to determine the minimal inhibitory concentration to penicillin, amoxicillin, cefotaxime, erythromycin, levofloxacin and oral cephalosporins, including cefditoren, cefixime and cefpodoxime. RESULTS: The antibiotics with the lowest proportion of resistant strains from 2004 to 2020 were cefditoren (<0.4%), followed by cefotaxime (<5%), penicillin (<6.5%) and levofloxacin (<7%). Among oral cephalosporins, cefixime was the cephalosporin with the highest MIC90 (32 mg/L) and MIC50 (8-16 mg/L) throughout the study, followed by cefpodoxime with highest values of MIC90 (4 mg/L) and MIC50 (2 mg/L) for the majority of the study period. In contrast, cefditoren was the cephalosporin with the lowest MIC90 (1 mg/L) and MIC50 (0.25-0.5 mg/L). CONCLUSIONS: Cefditoren was the antibiotic with the highest proportion of susceptible strains. Hence, more than 80% of the clinical strains were susceptible to cefditoren throughout the period 2004-20. The proportion of resistant isolates to cefditoren and cefotaxime was scarce, being less than 0.4% for cefditoren and lower than 5% for cefotaxime, despite the increased rates of serotypes not covered by the 13-valent pneumococcal conjugate vaccine.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Antibacterianos/farmacología , Cefalosporinas/farmacología , Humanos , Estudios Longitudinales , Pruebas de Sensibilidad Microbiana , Infecciones Neumocócicas/epidemiología , España/epidemiología
6.
Sci Immunol ; 6(63): eabc2934, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34559551

RESUMEN

Bacillus Calmette-Guerin (BCG) is an attenuated bacterial vaccine used to protect against Mycobacterium tuberculosis (Mtb) in regions where infections are highly prevalent. BCG is currently delivered by the intradermal route, but alternative routes of administration are of great interest, including intrapulmonary delivery to more closely mimic respiratory Mtb infection. In this study, mice subjected to pulmonary delivery of green fluorescent protein­tagged strains of virulent (Mtb) and attenuated (BCG) mycobacteria were studied to better characterize infected lung cell subsets. Profound differences in dissemination patterns were detected between Mtb and BCG, with a strong tendency of Mtb to disseminate from alveolar macrophages (AMs) to other myeloid subsets, mainly neutrophils and recruited macrophages. BCG mostly remained in AMs, which promoted their activation. These preactivated macrophages were highly efficient in containing Mtb bacilli upon challenge and disrupting early bacterial dissemination, which suggests a potential mechanism of protection associated with pulmonary BCG vaccination. Respiratory BCG also protected mice against a lethal Streptococcus pneumoniae challenge, suggesting that BCG-induced innate activation could confer heterologous protection against respiratory pathogens different from Mtb. BCG drove long-term activation of AMs, even after vaccine clearance, and these AMs reacted efficiently upon subsequent challenge. These results suggest the generation of a trained innate memory-like response in AMs induced by pulmonary BCG vaccination.


Asunto(s)
Vacuna BCG/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Modelos Animales de Enfermedad , Pulmón/inmunología , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mycobacterium tuberculosis/inmunología
7.
Vaccines (Basel) ; 9(2)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672701

RESUMEN

Streptococcus pneumoniae is a pathogen responsible for millions of deaths worldwide. Currently, the available vaccines for the prevention of S. pneumoniae infections are the 23-valent pneumococcal polysaccharide-based vaccine (PPV-23) and the pneumococcal conjugate vaccines (PCV10 and PCV13). These vaccines only cover some pneumococcal serotypes (up to 100 different serotypes have been identified) and are unable to protect against non-vaccine serotypes and non-encapsulated pneumococci. The emergence of antibiotic-resistant non-vaccine serotypes after these vaccines is an increasing threat. Therefore, there is an urgent need to develop new pneumococcal vaccines which could cover a wide range of serotypes. One of the vaccines most characterized as a prophylactic alternative to current PPV-23 or PCVs is a vaccine based on pneumococcal protein antigens. The choline-binding proteins (CBP) are found in all pneumococcal strains, giving them the characteristic to be potential vaccine candidates as they may protect against different serotypes. In this review, we have focused the attention on different CBPs as vaccine candidates because they are involved in the pathogenesis process, confirming their immunogenicity and protection against pneumococcal infection. The review summarizes the major contribution of these proteins to virulence and reinforces the fact that antibodies elicited against many of them may block or interfere with their role in the infection process.

8.
Clin Infect Dis ; 73(11): e3778-e3787, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-32990303

RESUMEN

BACKGROUND: Introduction of pneumococcal conjugate vaccines (PCVs) has reduced the disease caused by vaccine serotypes in children, providing herd protection to adults. However, the emergence of nonvaccine serotypes is of great concern worldwide. METHODS: This study includes national laboratory data from invasive pneumococcal disease (IPD) cases that affected pediatric and adult populations during 2009-2019. The impact of implementing different vaccine strategies for immunocompetent adults by comparing Spanish regions that used the 13-valent PCV (PCV13) vs regions that used the 23-valent pneumococcal polysaccharide vaccine (PPV23) was also analyzed for 2017-2019. RESULTS: The overall reductions in IPD cases by PCV13 serotypes in children and adults were 88% and 59%, respectively, during 2009-2019, with a constant increase in serotype 8 in adults since 2015. IPD cases by additional serotypes covered by PPV23 increased from 20% in 2009 to 52% in 2019. In children, serotype 24F was the most frequent in 2019, whereas serotypes 3 and 8 accounted for 36% of IPD cases in adults. Introduction of PCV13 or PPV23 in the adult calendar of certain Spanish regions reduced the IPD cases by PCV13 serotypes by up to 25% and 11%, respectively, showing a decrease of serotype 3 when PCV13 was used. CONCLUSIONS: Use of PCV13 in children has affected the epidemiology, reducing the burden of IPD in children but also in adults by herd protection; however, the increase in serotype 8 in adults is worrisome. Vaccination with PCV13 in adults seems to control IPD cases by PCV13 serotypes including serotype 3.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Adulto , Niño , Humanos , Incidencia , Lactante , Infecciones Neumocócicas/epidemiología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas , Serogrupo , España/epidemiología , Vacunas Conjugadas
9.
Vaccines (Basel) ; 9(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379235

RESUMEN

BACKGROUND: An epidemiological study of Streptococcus pneumoniae nasopharyngeal carriage in healthy children was carried out five years after the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13). OBJECTIVES: Study the impact of pediatric vaccination with PCV13, and other associated epidemiological factors on the status of nasopharyngeal carriage, the circulating pneumococcal serotypes, and the antibiotic susceptibility to more frequently used antibiotics. METHODS: A multi-center study was carried out in Primary Health Care, which included 1821 healthy children aged 1 to 4 years old. All isolates were sent to the Spanish Pneumococcal Reference Laboratory for serotyping and antimicrobial susceptibility testing. RESULTS: At least one dose of PCV13 had been received by 71.9% of children and carriage pneumococcal prevalence was 19.7%. The proportion of PCV13 serotypes was low (14.4%), with an observed predominance of non-vaccine serotypes, 23B, 11A, 10A, 35B/F, and 23A were the five most frequent. A high rate of resistance to penicillin, erythromycin, and trimethoprim sulfamethoxazole was found. CONCLUSIONS: A low proportion of PCV13 serotypes were detected, confirming the impact of pediatric vaccination for reducing the serotypes vaccine carriage. High resistance rates to clinically important antibiotics were observed.

10.
PLoS One ; 15(11): e0241780, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33141832

RESUMEN

The DNA topoisomerase complement of Streptococcus pneumoniae is constituted by two type II enzymes (topoisomerase IV and gyrase), and a single type I enzyme (topoisomerase I). These enzymes maintain the DNA topology, which is essential for replication and transcription. While fluoroquinolones target the type II enzymes, seconeolitsine, a new antimicrobial agent, targets topoisomerase I. We compared for the first time the in vitro effect of inhibition of topoisomerase I by seconeolitsine and of the type II topoisomerases by the fluoroquinolones levofloxacin and moxifloxacin. We used three isogenic non-encapsulated strains and five non-vaccine serotypes isolates belonging to two circulating pneumococcal clones, ST638 (2 strains) and ST1569V (3 strains). Each group contained strains with diverse susceptibility to fluoroquinolones. Minimal inhibitory concentrations, killing curves and postantibiotic effects were determined. Seconeolitsine demonstrated the fastest and highest bactericidal activity against planktonic bacteria and biofilms. When fluoroquinolone-susceptible planktonic bacteria were considered, seconeolitsine induced postantibiotic effects (1.00-1.87 h) similar than levofloxacin (1.00-2.22 h), but longer than moxifloxacin (0.39-1.71 h). The same effect was observed in sessile bacteria forming biofilms. Seconeolitsine induced postantibiotic effects (0.84-2.31 h) that were similar to those of levofloxacin (0.99-3.32 h) but longer than those of moxifloxacin (0.89-1.91 h). The greatest effect was observed in the viability and adherence of bacteria in the postantibiotic phase. Seconeolitsine greatly reduced the thickness of the biofilms formed in comparison with fluoroquinolones: 2.91 ± 0.43 µm (seconeolitsine), 7.18 ± 0.58 µm (levofloxacin), 17.08 ± 1.02 µm (moxifloxacin). When fluoroquinolone-resistant bacteria were considered, postantibiotic effects induced by levofloxacin and moxifloxacin, but not by seconeolitsine, were shorter, decreasing up to 5-fold (levofloxacin) or 2-fold (moxifloxacin) in planktonic cells, and up to 1.7 (levofloxacin) or 1.4-fold (moxifloxacin) during biofilm formation. Therefore, topoisomerase I inhibitors could be an alternative for the treatment of pneumococcal diseases, including those caused by fluoroquinolone-resistant isolates.


Asunto(s)
Antibacterianos/farmacología , Topoisomerasa de ADN IV/antagonistas & inhibidores , Fluoroquinolonas/farmacología , Streptococcus pneumoniae/efectos de los fármacos , Inhibidores de Topoisomerasa I/farmacología , Benzodioxoles/farmacología , Girasa de ADN/metabolismo , Levofloxacino/farmacología , Moxifloxacino/farmacología , Fenantrenos/farmacología , Streptococcus pneumoniae/enzimología
11.
PLoS Pathog ; 16(4): e1008404, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32240273

RESUMEN

Among infectious diseases, tuberculosis is the leading cause of death worldwide, and represents a serious threat, especially in developing countries. The protective effects of Bacillus Calmette-Guerin (BCG), the current vaccine against tuberculosis, have been related not only to specific induction of T-cell immunity, but also with the long-term epigenetic and metabolic reprogramming of the cells from the innate immune system through a process termed trained immunity. Here we show that MTBVAC, a live attenuated strain of Mycobacterium tuberculosis, safe and immunogenic against tuberculosis antigens in adults and newborns, is also able to generate trained immunity through the induction of glycolysis and glutaminolysis and the accumulation of histone methylation marks at the promoters of proinflammatory genes, facilitating an enhanced response after secondary challenge with non-related bacterial stimuli. Importantly, these findings in human primary myeloid cells are complemented by a strong MTBVAC-induced heterologous protection against a lethal challenge with Streptococcus pneumoniae in an experimental murine model of pneumonia.


Asunto(s)
Modelos Animales de Enfermedad , Inmunidad Innata/inmunología , Monocitos/inmunología , Mycobacterium tuberculosis/inmunología , Neumonía/prevención & control , Vacunas contra la Tuberculosis/administración & dosificación , Tuberculosis/prevención & control , Animales , Vacuna BCG/administración & dosificación , Vacuna BCG/inmunología , Células Cultivadas , Reprogramación Celular , Femenino , Humanos , Inmunidad Innata/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Neumonía/inmunología , Neumonía/microbiología , Tuberculosis/inmunología , Tuberculosis/microbiología , Vacunación
12.
Front Microbiol ; 11: 309, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174903

RESUMEN

Streptococcus pneumoniae is the main bacterial cause of respiratory infections in children and the elderly worldwide. Serotype replacement is a frequent phenomenon after the introduction of conjugated vaccines, with emerging serotypes 22F and 33F as frequent non-PCV13 serotypes in children and adults in North America and other countries. Characterization of mechanisms involved in evasion of the host immune response by these serotypes is of great importance in public health because they are included in the future conjugated vaccines PCV15 and PCV20. One of the main strategies of S. pneumoniae to persistently colonize and causes infection is biofilm formation. In this study, we have evaluated the influence of capsule polysaccharide in biofilm formation and immune evasion by using clinical isolates from different sources and isogenic strains with capsules from prevalent serotypes. Since the introduction of PCV13 in Spain in the year 2010, isolates of serotypes 22F and 33F are rising among risk populations. The predominant circulating genotypes are ST43322F and ST71733F , being CC433 in 22F and CC717 in 33F the main clonal complexes in Spain. The use of clinical isolates of different origin, demonstrated that pediatric isolates of serotypes 22F and 33F formed better biofilms than adult isolates and this was statistically significant. This phenotype was greater in clinical isolates from blood origin compared to those from cerebrospinal fluid, pleural fluid and otitis. Opsonophagocytosis assays showed that serotype 22F and 33F were recognized by the PSGL-1 receptor on leukocytes, although serotype 22F, was more resistant than serotype 33F to phagocytosis killing and more lethal in a mouse sepsis model. Overall, the emergence of additional PCV15 serotypes, especially 22F, could be associated to an enhanced ability to divert the host immune response that markedly increased in a biofilm state. Our findings demonstrate that pediatric isolates of 22F and 33F, that form better biofilm than isolates from adults, could have an advantage to colonize the nasopharynx of children and therefore, be important in carriage and subsequent dissemination to the elderly. The increased ability of serotype 22F to avoid the host immune response, might explain the emergence of this serotype in the last years.

13.
Nat Commun ; 9(1): 3994, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30266933

RESUMEN

Osteosarcoma is a type of bone tumour characterized by considerable levels of phenotypic heterogeneity, aneuploidy, and a high mutational rate. The life expectancy of osteosarcoma patients has not changed during the last three decades and thus much remains to be learned about the disease biology. Here, we employ a RGB-based single-cell tracking system to study the clonal dynamics occurring in a de novo-induced murine osteosarcoma model. We show that osteosarcoma cells present initial polyclonal dynamics, followed by clonal dominance associated with adaptation to the microenvironment. Interestingly, the dominant clones are composed of subclones with a similar tumour generation potential when they are re-implanted in mice. Moreover, individual spontaneous metastases are clonal or oligoclonal, but they have a different cellular origin than the dominant clones present in primary tumours. In summary, we present evidence that osteosarcomagenesis can follow a neutral evolution model, in which different cancer clones coexist and propagate simultaneously.


Asunto(s)
Neoplasias Óseas/metabolismo , Células Clonales/metabolismo , Proteínas Luminiscentes/metabolismo , Osteosarcoma/metabolismo , Animales , Neoplasias Óseas/genética , Proteínas Luminiscentes/genética , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Ratones Transgénicos , Microscopía Confocal , Osteosarcoma/genética , Análisis de la Célula Individual/métodos
14.
Methods Mol Biol ; 1779: 497-512, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29886553

RESUMEN

The study of brain pathology by fluorescence microscopy finds in the autofluorescence of the tissue an additional difficulty for the recognition of markers of interest. In particular, in the immunofluorescence study of brains from Alzheimer's disease (AD) patients, several approaches have been attempted to eliminate or mask the presence of autofluorescent aggregates. In the present work, we propose a method to characterize by fluorescent microscopy senile plaques discriminating them from autofluorescent aggregates, such as lipofuscin granules.This work describes four protocols carried out in human brain tissue of patients with AD, covering adequate tissue preparation, immunofluorescence acquisition, and data analysis: 1. Tissues processing of frozen samples for optimal epitope conservation. 2. Analysis of the fluorescence emission spectrum of the tissue by performing a confocal microscopy λ-scan. 3. Analysis of fluorescence emission of both intact and formic acid-treated tissues in four channels corresponding to the emission in blue, green, near red, and far-red regions. 4. Analysis a specific immunostaining of amyloid beta in senile plaques, using fluorescent-labeled antibodies by using specific emission channels to avoid detection of tissue autofluorescence.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Lipofuscina/química , Placa Amiloide/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Microscopía Confocal , Microscopía Fluorescente , Placa Amiloide/metabolismo , Conservación de Tejido
15.
Artículo en Inglés | MEDLINE | ID: mdl-29581113

RESUMEN

Bacteriophage-borne lytic enzymes, also named lysins or enzybiotics, are efficient agents for the killing of bacterial pathogens. The colonization of the respiratory tract by Streptococcus pneumoniae is a prerequisite for the establishment of the infection process. Hence, we have evaluated the antibacterial activities of three different lysins against pneumococcal colonization using human nasopharyngeal and lung epithelial cells as well as a mouse model of nasopharyngeal colonization. The lysins tested were the wild-type Cpl-1, the engineered Cpl-7S, and the chimera Cpl-711. Moreover, we included amoxicillin as a comparator antibiotic. Human epithelial cells were infected with three different multidrug-resistant clinical isolates of S. pneumoniae followed by a single dose of the corresponding lysin. The antimicrobial activities of these lysins were also evaluated using a mouse nasopharyngeal carriage model. The exposure of the infected epithelial cells to Cpl-7S did not result in the killing of any of the pneumococcal strains investigated. However, the treatment with Cpl-1 or Cpl-711 increased the killing of S. pneumoniae organisms adhered to both types of human epithelial cells, with Cpl-711 being more effective than Cpl-1, at subinhibitory concentrations. In addition, a treatment with amoxicillin had no effect on reducing the carrier state, whereas mice treated by the intranasal route with Cpl-711 showed significantly reduced nasopharyngeal colonization, with no detection of bacterial load in 20 to 40% of the mice. This study indicates that Cpl-1 and Cpl-711 lysins might be promising antimicrobial candidates for therapy against pneumococcal colonization.


Asunto(s)
Antibacterianos/farmacología , Enfermedades Nasofaríngeas/microbiología , Infecciones Neumocócicas/microbiología , Sistema Respiratorio/microbiología , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/patogenicidad , Animales , Antibacterianos/uso terapéutico , Humanos , Ratones , Enfermedades Nasofaríngeas/tratamiento farmacológico , Infecciones Neumocócicas/tratamiento farmacológico
16.
J Virol ; 90(24): 11220-11230, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27707923

RESUMEN

Most double-stranded RNA (dsRNA) viruses are transcribed and replicated in a specialized icosahedral capsid with a T=1 lattice consisting of 60 asymmetric capsid protein (CP) dimers. These capsids help to organize the viral genome and replicative complex(es). They also act as molecular sieves that isolate the virus genome from host defense mechanisms and allow the passage of nucleotides and viral transcripts. Rosellinia necatrix quadrivirus 1 (RnQV1), the type species of the family Quadriviridae, is a dsRNA fungal virus with a multipartite genome consisting of four monocistronic segments (segments 1 to 4). dsRNA-2 and dsRNA-4 encode two CPs (P2 and P4, respectively), which coassemble into ∼450-Å-diameter capsids. We used three-dimensional cryo-electron microscopy combined with complementary biophysical techniques to determine the structures of RnQV1 virion strains W1075 and W1118. RnQV1 has a quadripartite genome, and the capsid is based on a single-shelled T=1 lattice built of P2-P4 dimers. Whereas the RnQV1-W1118 capsid is built of full-length CP, P2 and P4 of RnQV1-W1075 are cleaved into several polypeptides, maintaining the capsid structural organization. RnQV1 heterodimers have a quaternary organization similar to that of homodimers of reoviruses and other dsRNA mycoviruses. The RnQV1 capsid is the first T=1 capsid with a heterodimer as an asymmetric unit reported to date and follows the architectural principle for dsRNA viruses that a 120-subunit capsid is a conserved assembly that supports dsRNA replication and organization. IMPORTANCE: Given their importance to health, members of the family Reoviridae are the basis of most structural and functional studies and provide much of our knowledge of dsRNA viruses. Analysis of bacterial, protozoal, and fungal dsRNA viruses has improved our understanding of their structure, function, and evolution, as well. Here, we studied a dsRNA virus that infects the fungus Rosellinia necatrix, an ascomycete that is pathogenic to a wide range of plants. Using three-dimensional cryo-electron microscopy and analytical ultracentrifugation analysis, we determined the structure and stoichiometry of Rosellinia necatrix quadrivirus 1 (RnQV1). The RnQV1 capsid is a T=1 capsid with 60 heterodimers as the asymmetric units. The large amount of genetic information used by RnQV1 to construct a simple T=1 capsid is probably related to the numerous virus-host and virus-virus interactions that it must face in its life cycle, which lacks an extracellular phase.


Asunto(s)
Proteínas de la Cápside/química , Cápside/ultraestructura , Genoma Viral , Virus ARN/ultraestructura , ARN Viral/ultraestructura , Virión/ultraestructura , Secuencia de Aminoácidos , Cápside/química , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , Multimerización de Proteína , Estructura Secundaria de Proteína , Virus ARN/química , ARN Viral/metabolismo , Virión/química , Replicación Viral
17.
Ticks Tick Borne Dis ; 7(6): 1274-1279, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27430965

RESUMEN

The invasive form of the apicomplexan parasite Babesia divergens, the free merozoite, invades the erythrocytes of host vertebrates, leading to significant pathology. Although invasion is an active process critical for parasite survival, it is not yet entirely understood. Using techniques to isolate the viable free merozoite, as well as electron microscopy, we undertook a detailed morphological study and explored the sub-cellular structure of the invasive B. divergens free merozoite after it had left the host cell. We examined characteristic apicomplexan features such as the apicoplast, the inner and discontinuous double membrane complex, and the apical complex; some aspects of erythrocyte entry by B. divergens were also defined by electron microscopy. This study adds to our understanding of B. divergens free merozoites and their invasion of human erythrocytes.


Asunto(s)
Babesia/ultraestructura , Merozoítos/ultraestructura
18.
PLoS Pathog ; 12(3): e1005500, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26975045

RESUMEN

Bacterial uptake by phagocytic cells is a vital event in the clearance of invading pathogens such as Streptococcus pneumoniae. A major role of the P-selectin glycoprotein ligand-1 (PSGL-1) on leukocytes against invasive pneumococcal disease is described in this study. Phagocytosis experiments using different serotypes demonstrated that PSGL-1 is involved in the recognition, uptake and killing of S. pneumoniae. Co-localization of several clinical isolates of S. pneumoniae with PSGL-1 was demonstrated, observing a rapid and active phagocytosis in the presence of PSGL-1. Furthermore, the pneumococcal capsular polysaccharide and the main autolysin of the bacterium--the amidase LytA--were identified as bacterial ligands for PSGL-1. Experimental models of pneumococcal disease including invasive pneumonia and systemic infection showed that bacterial levels were markedly increased in the blood of PSGL-1-/- mice. During pneumonia, PSGL-1 controls the severity of pneumococcal dissemination from the lung to the bloodstream. In systemic infection, a major role of PSGL-1 in host defense is to clear the bacteria in the systemic circulation controlling bacterial replication. These results confirmed the importance of this receptor in the recognition and clearance of S. pneumoniae during invasive pneumococcal disease. Histological and cellular analysis demonstrated that PSGL-1-/- mice have increased levels of T cells migrating to the lung than the corresponding wild-type mice. In contrast, during systemic infection, PSGL-1-/- mice had increased numbers of neutrophils and macrophages in blood, but were less effective controlling the infection process due to the lack of this functional receptor. Overall, this study demonstrates that PSGL-1 is a novel receptor for S. pneumoniae that contributes to protection against invasive pneumococcal disease.


Asunto(s)
Leucocitos/inmunología , Glicoproteínas de Membrana/inmunología , Infecciones Neumocócicas/inmunología , Neumonía Neumocócica/inmunología , Streptococcus pneumoniae/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Pulmón/inmunología , Macrófagos/patología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Neutrófilos/inmunología , Fagocitosis/inmunología , Sepsis/microbiología
19.
Int J Infect Dis ; 33: 202-4, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25686807

RESUMEN

Human babesiosis is a zoonosis primarily transmitted through Ixodes ticks and alternatively by routes such as blood transfusions from asymptomatic donors. We report the first case of human babesiosis caused by Babesia divergens in a patient with HIV. This study also focuses on elucidating the possible transmission route of infection in this patient, who received numerous blood transfusions but showed patent symptoms only after splenectomy. A battery of detection tools along with a novel Western-Blot Assay and Enzyme Linked Immunosorbent Assay using the major surface protein of B. divergens (Bd37) as a target were used to evaluate the presence of B. divergens or antibodies against the parasite in samples from the patient and the blood donors involved in this case. A retrospective study of the humoral status against the parasite revealed B. divergens IgG antibodies in one of the implicated donors, but also showed that the patient had been already exposed to the parasite before any transfusion. Thus, this analysis of natural and transfusion transmission routes suggests a pre-existing subclinical babesiosis in the patient.


Asunto(s)
Babesia/aislamiento & purificación , Babesiosis/diagnóstico , Coinfección/diagnóstico , Infecciones por VIH/complicaciones , Adulto , Babesiosis/etiología , Donantes de Sangre , Transfusión Sanguínea , Humanos , Masculino , Estudios Retrospectivos , Esplenectomía
20.
Infect Immun ; 83(2): 591-603, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25404032

RESUMEN

The complement system is a key component of the host immune response for the recognition and clearance of Streptococcus pneumoniae. In this study, we demonstrate that the amidase LytA, the main pneumococcal autolysin, inhibits complement-mediated immunity independently of effects on pneumolysin by a complex process of impaired complement activation, increased binding of complement regulators, and direct degradation of complement C3. The use of human sera depleted of either C1q or factor B confirmed that LytA prevented activation of both the classical and alternative pathways, whereas pneumolysin inhibited only the classical pathway. LytA prevented binding of C1q and the acute-phase protein C-reactive protein to S. pneumoniae, thereby reducing activation of the classical pathway on the bacterial surface. In addition, LytA increased recruitment of the complement downregulators C4BP and factor H to the pneumococcal cell wall and directly cleaved C3b and iC3b to generate degradation products. As a consequence, C3b deposition and phagocytosis increased in the absence of LytA and were markedly enhanced for the lytA ply double mutant, confirming that a combination of LytA and Ply is essential for the establishment of pneumococcal pneumonia and sepsis in a murine model of infection. These data demonstrate that LytA has pleiotropic effects on complement activation, a finding which, in combination with the effects of pneumolysin on complement to assist with pneumococcal complement evasion, confirms a major role of both proteins for the full virulence of the microorganism during septicemia.


Asunto(s)
Pared Celular/inmunología , Activación de Complemento/inmunología , Complemento C3/metabolismo , Interacciones Huésped-Patógeno/inmunología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Infecciones Neumocócicas/inmunología , Streptococcus pneumoniae/inmunología , Animales , Cápsulas Bacterianas/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Pared Celular/enzimología , Complemento C3/antagonistas & inhibidores , Complemento C3/inmunología , Factor H de Complemento/inmunología , Antígenos de Histocompatibilidad/inmunología , Ratones , Ratones Endogámicos C57BL , N-Acetil Muramoil-L-Alanina Amidasa/genética , Fagocitosis/inmunología , Fosforilcolina/metabolismo , Infecciones Neumocócicas/microbiología , Polisacáridos Bacterianos/inmunología , Sepsis/inmunología , Sepsis/microbiología , Estreptolisinas/genética , Estreptolisinas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...